Теория вероятностей и основные понятия теории


Содержание

Теория вероятностей – это раздел математики, изучающий закономерности случайных явлений: случайные события, случайные величины, их свойства и операции над ними.

Долгое время теория вероятностей не имела четкого определения, которое было разработано только в 1929-м году. Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости, рулетка). Французские математики XVII века Блез Паскаль и Пьер Ферма, исследуя прогнозирование выигрыша в азартных играх, открыли первые вероятностные закономерности, возникающие при бросании костей.

Теория вероятности возникла как наука из убеждения, что в основе массовых случайных событий лежат определенные закономерности. Теория вероятности изучает данные закономерности.

Теория вероятностей занимается изучением событий, наступление которых достоверно неизвестно. Она позволяет судить о степени вероятности наступления одних событий по сравнению с другими.

Например: определить однозначно результат выпадения «орла» или «решки» в результате подбрасывания монеты нельзя, но при многократном подбрасывании выпадает примерно одинаковое число «орлов» и «решек», что означает, что вероятность того, что выпадет «орел» или «решка», равна 50%.

Испытанием в этом случае называется реализация определенного комплекса условий, то есть в данном случае подбрасывание монеты. Испытание может воспроизводиться неограниченное число раз. При этом комплекс условий включает в себя случайные факторы.

Результатом испытания является событие. Событие бывает:

  1. Достоверное (всегда происходит в результате испытания);
  2. Невозможное (никогда не происходит);
  3. Случайное (может произойти или не произойти в результате испытания).

Например, при подбрасывании монеты невозможное событие — монета станет на ребро, случайное событие — выпадение «орла» или «решки». Конкретный результат испытания называется элементарным событием. В результате испытания происходят только элементарные события. Совокупность всех возможных, различных, конкретных исходов испытаний называется пространством элементарных событий.

Основные понятия теории

Вероятность — степень возможности происхождения события. Когда основания для того, чтобы какое-нибудь возможное событие произошло в действительности, перевешивают противоположные основания, то это событие называют вероятным, в противном случае — маловероятным или невероятным.

Случайная величина — это величина, которая в результате испытания может принять то или иное значение, причем неизвестно заранее, какое именно. Например: число на пожарную станцию за сутки, число попадания при 10-ти выстрелах и. т.д.

Случайные величины можно разделить на две категории.

  1. Дискретной случайной величиной называется такая величина, которая в результате испытания может принимать определенные значения с определенной вероятностью, образующие счетное множество (множество, элементы которого могут быть занумерованы). Это множество может быть как конечным, так и бесконечным. Например, количество выстрелов до первого попадания в цель является дискретной случайной величиной, т.к. эта величина может принимать и бесконечное, хотя и счетное количество значений.
  2. Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка. Очевидно, что число возможных значений непрерывной случайной величины бесконечно.

Вероятностное пространство — понятие, введённое А. Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплине.

Вероятностное пространство — это тройка Формула 1 (иногда обрамляемая угловыми скобками: Угловые скобки, где

 — это произвольное множество, элементы которого называются элементарными событиями, исходами или точками;
 — сигма-алгебра подмножеств , называемых (случайными) событиями;
 — вероятностная мера или вероятность, т.е. сигма-аддитивная конечная мера, такая что .

Теорема Муавра — Лапласа — одна из предельных теорем теории вероятностей, установлена Лапласом в 1812 году. Она утверждает, что число успехов при многократном повторении одного и того же случайного эксперимента с двумя возможными исходами приблизительно имеет нормальное распределение. Она позволяет найти приближенное значение вероятности.

Если при каждом из  независимых испытаний вероятность появления некоторого случайного события  равна  () и  — число испытаний, в которых  фактически наступает, то вероятность справедливости неравенства близка (при больших ) к значению интеграла Лапласа.

Функция распределения в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий полностью определяет случайную величину.

Математическое ожидание — среднее значение случайной величины (это распределение вероятностей случайной величины, рассматривается в теории вероятностей). В англоязычной литературе обозначается через , в русской — . В статистике часто используют обозначение .

Пусть задано вероятностное пространство  и определённая на нём случайная величина . То есть, по определению,  — измеримая функция. Тогда, если существует интеграл Лебега от  по пространству , то он называется математическим ожиданием, или средним значением и обозначается .

Дисперсия случайной величины — мера разброса данной случайной величины, т. е. её отклонения от математического ожидания. Обозначается  в русской литературе и  в зарубежной. В статистике часто употребляется обозначение  или . Квадратный корень из дисперсии  называется среднеквадратичным отклонением, стандартным отклонением или стандартным разбросом.

Пусть  — случайная величина, определённая на некотором вероятностном пространстве. Тогда

где символ  обозначает математическое ожидание.

В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют зависимыми, если значение одной из них влияет на вероятность значений другой.

Условная вероятность — вероятность одного события при условии, что другое событие уже произошло.

Пусть  — фиксированное вероятностное пространство. Пусть  два случайных события, причём . Тогда условной вероятностью события  при условии события  называется
.
Закон больших чисел — это группа теорем, устанавливающих устойчивость средних результатов большого количества случайных явлений и объясняющих причину этой устойчивости.

Простейшая форма закона больших чисел – это теорема Бернулли, утверждающая, что если вероятность события одинакова во всех испытаниях, то с увеличением числа испытаний частота события стремится к вероятности события и перестает быть случайной.

Закон больших чисел в теории вероятностей утверждает, что среднее арифметическое конечной выборки из фиксированного распределения близко к теоретическому среднему математическому ожиданию этого распределения. В зависимости от вида сходимости, различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти наверняка.

Общий смысл закона больших чисел — совместное действие большого числа одинаковых и независимых случайных факторов приводит к результату, в пределе не зависящему от случая.

На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.

Центральные предельные теоремы — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.

Так как многие случайные величины в приложениях формируются под влиянием нескольких слабо зависимых случайных факторов, их распределение считают нормальным. При этом должно соблюдаться условие, что ни один из факторов не является доминирующим. Центральные предельные теоремы в этих случаях обосновывают применение нормального распределения.

Остались вопросы? Спросите у наших знатоков!
Нашли ошибку?Сообщите о ней
Комментарии 0 0 0